

12th COGNO ANNUAL SCIENTIFIC MEETING The Neuro-Oncology Picture: Now and The Future

Sunday 27th October – Tuesday 29th October 2019 International Convention Centre Sydney, Australia

CONFERENCE BOOKLET

CONTENTS

Program of Events	Page 3
Oral Abstract Listing	Page 5
Poster Abstract Listing	Page 6
Oral Abstracts	Page 9
Poster Abstracts	Page 12
Delegate List	Page 30

2019 ASM ORGANISING COMMITTEE

Dr Jonathon Parkinson, Convenor	Neurosurgeon
Dr Yael Barnett	Neuroradiologist
Dr Ben Jonker	Neurosurgeon
Ms Marina Kastelan	Neuro-Oncology Nurse Practitioner
A/Prof Mustafa Khasraw	Medical Oncologist - Until 25 Aug 2019
A/Prof Hien Le	Radiation Oncologist
A/Prof Kerrie McDonald	Scientist - Until 5 July 2019
Dr Sanjeev Gill*	Medical Oncologist - From 6 Aug 2019
A/Prof Rosemary Harrup*	Medical Oncologist - From 6 Aug 2019
Ms Jenny Chow	Executive Officer, COGNO
Ms Yi Feng	Project Officer, COGNO

*2020 ASM Co-Convenors

TWITTER

Use our Conference hashtag #COGNO19

COMPLIMENTARY INTERNET

Complimentary wireless internet is available for all delegates in the COGNO ASM meeting rooms.

Network: ICC Sydney Public Wi-Fi **Password:** No password required

Dear Colleagues

On behalf of the organising committee it is our great pleasure to welcome you to the 12th COGNO Annual Scientific Meeting.

The theme of the meeting is 'The Neuro-oncology Picture: Now and the Future'.

We are very fortunate to welcome five international guest speakers as listed below:

- Prof Colin Watts MBBS PhD FRCS(SN)
- A/Prof Helen Shih MD MS MPH
- Prof Benjamin Ellingson PhD MS
- Prof Ian Law MD PhD DMSc
- A/Prof Seema Nagpal MD

The meeting sessions will focus on: Imaging, Surgery, Skull Base Tumours, Immunotherapy and COGNO Trials Updates, Assessing Treatment Response, Basic Science, and Supportive Care.

In addition to our invited international speakers, we have representation from a broad number of disciplines across our local contributors. Also, the high quality of submitted abstracts is reflected in the oral presentations awarded.

Prizes will be available for the Most Outstanding Oral Presentation, the Most Outstanding Poster Presentation, the Young Investigator Award and the BTAA Lynette Williams Award for the best posters related to research into supportive care for people with brain tumours. Presentation will also be made for the MSD Hubert Stuerzl Memorial Educational Award. In addition, we are delighted to welcome the 2019 COGNO Outreach Education Preceptorship recipient, Ms Minjmaa Minjgee from Mongolia.

Our appreciation goes to all our sponsors and supporters: Cure Brain Cancer Foundation, The Brain Cancer Group, Bristol-Myers Squibb (BMS), Roche, Elekta, Philips, Emulate Therapeutics, Medigroup, and Cancer Australia.

On behalf of the Organising Committee, we hope you enjoy the ASM.

Kind regards

Dr Jonathon Parkinson Convenor COGNO ASM 2019

Prof Anna Novak Chair COGNO

The COGNO Scientific Program has been developed independent of sponsor involvement.

Other Sponsors and Supporters

Sunday 27th October – Tuesday 29th October 2019 International Convention Centre Sydney, Australia

PROGRAM OF EVENTS

(Changes may be made to the program)

Sunday 27 October: Pre–ASM Satellite Meetings			
TIME	MEETING	CHAIR	
9:30am – 2:15pm	Brain Cancer Patient Education and Support Forum (registration via the BTAA website) (Room C3.6)	Hao-Wen Sim	
10:20am 4:15 mm The Brain Cancer Group Scientific Meeting: Applying advanced imaging to			
10.50am – 4.15pm	Neuro-oncology (registration via The Brain Cancer Group website) (Room C3.5)		
Brain Cancer Biobanking Australia (BCBA) consortium meeting (closed meeting)		Michael Besser	
12.50 2.50pm	(Room C3.4)	WIICHAEL DESSEL	
3:00 – 5:00pm	Management Committee (MC) meeting (closed meeting) (Room C3.4)	Anna Nowak	
6:30pm	Convenor's Dinner (by invitation only)		

Monday 28 Octob	er: ASM Day 1 (Cockle Bay Room 1)	
TIME	MEETING	CHAIR
8:00 – 10:00am	COGNO Scientific Advisory Committee Meeting (open to COGNO members only) (Room C3.4 & C3.5)	Hui Gan
10:00 – 10:30am	Morning Tea	
10:30 – 10:40am	Welcome and Day 1 program overview	
10:40 – 12:30pm	Session 1 – Imaging	Yael Barnett & Jonathon Parkinson
	Recent advances in MRI for brain tumours – Ben Ellingson	
	Recent advances in PET Imaging for brain tumours – Ian Law	
	Extent of Resection – Colin Watts	
	Intraoperative Imaging – Kate Drummond	
12:30 – 1:30pm	Lunch	
1:30 – 3:00pm	Session 2 - Surgery	Jonathon Parkinson & Ben Jonker
	Decision making in the treatment of low grade glioma – Raymond Cook	
	Case based panel discussion	
	Paper ID 24: Second interim and 1st molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion – <i>Anna Nowak</i>	
3:00 – 3:30pm	Afternoon tea	
3:30 – 5:00pm	Session 3 – Skull Base Tumours	Ben Jonker & Hien Le
	Endoscopic Endonasal Surgery – what can we achieve? – Richard Harvey	
	Radiation for Skull Base Tumours – Helen Shih	
	Meningiomas and grading – how can we do it better? The role of DNA methylation profiling – <i>Joanne Sy</i>	
	Temozolomide for pituitary tumours – Ann McCormack	
5:00 – 6:00pm	Welcome Reception and Poster Walkaround	
~6:30/7:00 - 10:30pm	COGNO Conference Dinner – includes presentation of the MSD Hubert Stuerzl Memorial Educational Award, COGNO Outreach Education Preceptorship and BTAA Lynette Williams Award (L'Aqua restaurant, Terrace Room, Rooftop Level, Cockle Bay Wharf, Darling Park, Sydney)	

Tuesday 29 Octob	er: ASM Day 2 (Cockle Bay Room 1)	
TIME	MEETING	CHAIR
8:30 – 9:00am	On arrival tea/coffee	
9:00 – 9:10am	Welcome and Day 2 program overview	
9:10 – 10:30am	Session 4 – Immunotherapy and COGNO Trials Updates	Sanjeev Gill & Hui Gan
	Immunotherapy and why has success been limited? – Seema Nagpal	
	Trials updates	
10:30 – 11:00am	Morning tea	
11:00 – 12:30pm	Session 5 – Assessing Treatment Response	Hien Le & Yael Barnett
	MRI and treatment response – Ben Ellingson	
	PET and treatment response – Ian Law	
	Pseudoprogression – how do we assess and treat – Helen Shih	
	Re-operation for treatment effect / progressive disease - Colin Watts	
	Case examples	
12:30 – 1:30pm	Lunch	
1:30 – 2:45pm	Session 6 – Basic Science	Jonathon Parkinson & Rosemary Harrup
	Radiogenomics in glioma – Ben Ellingson	
	Teletrials – Kate Burbury	
	Paper ID 15: DeepSurvNet: Deep Survival Convolutional Network for Brain cancer Survival Rate Classification based on Histopathological Images – Amin Zadeh Shirazi	
	Paper ID 4: Targeted drug delivery reduces brain metastases – Sarah Shigdar	
2:45 – 3:15pm	Afternoon tea	
3:15 – 4:10pm	Session 7 – Supportive Care	Marina Kastelan & Rosemary Harrup
	Quality of Life for Glioma Patients – Kate Drummond	
	Palliative Care for Glioma Patients – Anthoula Mohumadally	
	Rehabilitation for Glioma Patients – Andrew Cole	
	Paper ID 26: Building the Bridge: The value of consumer co-design in brain	
	cancer resource development – Dianne Legge	
	ASM Summary and Close – includes presentation of the Most Outstanding Oral	
4:10 – 4:20pm	Presentation, Most Outstanding Poster Presentation and Young Investigator Awards	
4:45 – 5:30pm	COGNO Annual General Meeting (open to COGNO members only) (Room C3.2)	Anna Nowak

Wednesday 30 October: Post-ASM Satellite Meetings		
TIME	MEETING	CHAIR
TDA	COGNO Consumer Advisory Panel Meeting (closed meeting) (Novotel Sydney	Desma
IDA	Darling Square, Cockle Bay Room)	Spyridopoulos
	OzMRS Symposium (UTS Science Building, Lecture Theater CB04.03.310,	
	registration via OzMRS symposium website)	

ORAL ABSTRACT LISTING

Session 2 – Surgery

24 Second interim and 1st molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion

<u>Anna Nowak</u>, Helen Wheeler, Mark Rosenthal, Michael Back, Rosalind Jeffree, John Simes, Sanjeev Gill, Katharine Drummond, Gail Ryan, Anthony Dowling, Rosemary Harrup, Lawrence Cher, Robyn Leonard, Thierry Gorlia, Vassilis Golfinopoulos, Johann Kros, Sara Erridge, Michael Vogelbaum, Brigitta Baumert, Martin van den Bent

Session 6 – Basic Science

15 DeepSurvNet: Deep Survival Convolutional Network for Brain cancer Survival Rate Classification based on Histopathological Images

Amin Zadeh Shirazi, Eric Fornacieri, Narjes Sadat Bagherian, Lisa Ebert, Barbara Koszyca, Guillermo Gomez

4 Targeted drug delivery reduces brain metastases

Joanna Macdonald, Delphine Denoyer, Ingrid Burvenich, Normand Pouliot, Sarah Shigdar

Session 7 – Supportive Care

26 Building the Bridge: The value of consumer co-design in brain cancer resource development

Dianne Legge, Steffi Renehan, Emma Daly, Louise Saliba, Paula Howell

POSTER ABSTRACT LISTING

- 1 A case of pituitary carcinoma successfully treated with immune checkpoint inhibitor therapy Lydia S. Lamb, Ann I. McCormack, David M. Thomas, Hao-Wen Sim
- 2 Radionecrosis in Patients Receiving Stereotactic Radiosurgery for Brain Metastases

Philippa Ell, Yael Barnett, Peter Earls, Louise Emmett, Michael Rodriguez, Cecelia Gzell

3 The "ART" of symptoms: Symptomax, a novel physician-assisted mobile application with artificial intelligence for symptom tracking, as a front-end for applied radiation therapeutics (ART)

Abhishek Puri, Amit Dixit, Naren Radhakrishan, Anshuman Nanda, P Mohandass

5 Soft substrates mechanically matched to brain tissue reveal brain tumour reveal resistance to kinase inhibitors

Victoria Prior, Farhana Sarker, Joey Vessey, Kaitlyn Griffin, Penny Vogelzang, Thomas Grundy, Kylie Turner, Peta Bradbury, Camilla Mitchell, Justin Cooper-White, Bryan Day, Terrance Johns, <u>Geraldine O'Neill</u>

6 START: A single-arm, phase IIa trial of the activity of seviteronel in patients with androgen receptor (AR)positive central nervous system (CNS) tumours

<u>Sarennya Pathmanandavel</u>, Amy Prawira, Rasha Cosman, Subotheni Thavaneswaran, Cecilia Gzell, Benjamin Jonker, Jacob Fairhall, Mark Winder, Yael Barnett, Pascal Bou-Haidar, Michael Rodriguez, Alistair Lochhead, Peter Earls, Svetlana Cherepanoff, Rebecca Woollands, Lauren Armstrong, Jaime Parima, Anthony Joshua, Hao-Wen Sim

7 Developing a National Paediatric and Adult Brain Cancer Registry: A Clinical Feasibility Study

Eric Browne, Robyn Leonard, Michael Besser, Anna K. Nowak, Claire Vajdic, Timothy Churches, Hui Gan, Craig Gedye, Nicholas G. Gottardo, Chris J. Fraser, John Zalcberg, Mythily Sachchithananthan, <u>Rosalind L. Jeffree</u>

8 Management and visual outcomes in optic nerve sheath meningioma - a multicentre study and pooled data analysis

Chris Ovens, Benjamin Dean, <u>Cecelia Gzell</u>, Nitya Patanjali, Benjamin Jonker, Michael O'Connor, Patrick Estoesta, Tatiana De Martin, Clare Fraser

9 Innovative 'omics approaches reveal the exciting promise of extracellular vesicle profiling as a blood test for monitoring glioma patients

Kimberley L. Kaufman, Susannah Hallal, Heng Wei, Maggie Lee, Hao-Wen Sim, Brindha Shivalingam, Michael E. Buckland

10 Disruption of the Blood-Brain Barrier using MR-guided Focused Ultrasound Increases Antibody Delivery to Non-Enhancing High Grade Glioma

Caterina Brighi, Lee Reid, Alison White, Zara Bruce, Bryan Day, Stephen Rose, Andrew Whittaker, Simon Puttick

11 Targeting EphA3 with radioimmunotherapy or antibody-drug conjugates is an effective therapy for GBM

<u>Carolin Offenhäuser</u>, Fares Al-Ejeh, Simon Puttick, Kathleen Ensbey, Zara Bruce, Paul Jamieson, Fiona Smith, Brett Stringer, Benjamin Carrington, Adrian Fuchs, Craig Bell, Rosalind Jeffree, Stephen Rose, Kristofer Thurecht, Andrew Boyd, Bryan Day

12 Multiparametric serial magnetic resonance imaging assessment of gross tumour volume and hippocampal changes over the course of adjuvant brain cancer radiotherapy

<u>Farhannah Aly</u>, Eng-Siew Koh, Robba Rai, Vanessa Estall, Gary P Liney, Michael B Barton, Lois C Holloway, Michael G Jameson

13 DYRK1A and Rb cooperatively control the proliferation-dormancy switch and therapy resistance in glioblastoma

Ariadna Recasens, Sean Humphrey, Lenka Munoz

14 Australia and New Zealand Children's Haematology / Oncology Group (ANZCHOG): a novel pathway for enrolment of adolescent / young adult (AYA) patients with central nervous system (CNS) malignancies

John Heath, David Ziegler, Jordan Hansford, Nicholas Gottardo

16 Redo craniotomy or Bevacizumab for symptomatic steroid refractory true or pseudoprogression following IMRT for Glioblastoma

Michael Back, Dasantha Jayamanne, Theresa Cook, Helen Wheeler

17 Reflecting on survivorship outcomes to aid initial decision-making in patients managed for IDH-mutated Anaplastic Glioma

Michael Back, Dasantha Jayamanne, Marina Kastelan, Chris Brown, Helen Wheeler

18 Identifying barriers to completion of adjuvant therapy in patients with newly diagnosed glioblastoma multiforme: an exploratory study

Kate Rzadki, Sunit Das

19 K27M histone mutated diffuse midline Gliomas in older patients

Alexander Yuile, Marina Kastelan, Jamie Drummond, Michael Back, Helen Wheeler

20 Next generation sequencing impacts the classification and management of gliomas

Veronica Cheung, Joanne Sy, Grace Wei, Maggie Lee, Michael Buckland

21 Clinical trials in Glioblastoma: learning from previous experiences towards optimal development of trial design

Adithya Balasubramanian, Ashray Gunjur, Sagun Parakh, Lawrence Cher, Hui Gan

22 Mapping of B7-H3 immune checkpoint expression to diagnostic morphological features in glioblastoma using deep convolutional neural networks

Guoqing Bao, Ran Xu, Christina Loh, Svetlana Cherepanoff, Kerrie McDonald, Anna K. Novak, Richard Banati, Michael Buckland, Xiuying Wang, <u>Manuel B. Graeber</u>

25 Modern Brain Cancer Biobanking: It's not just about preserving tumour tissue

Rebecca Ormsby, Santosh Poonnoose, Lisa Ebert, Michael Brown, Melinda Tea, Stuart Pitson, Ganessan Kichenadasse

26 Building the Bridge: The value of consumer co-design in brain cancer resource development

Dianne Legge, Steffi Renehan, Emma Daly, Louise Saliba, Paula Howell

27 Estimation of BRAF V600E mutations using Immunohistochemistry(IHC) in new diagnosis and recurrent malignant glioma patients managed at the Canberra Hospital

Divyanshu Dua, Chris Twyford, Mitali Fadia, Gane Pranavan

28 Challenges in regional neurosurgery – analysis of distance and time in the surgical management of brain metastases in North Queensland

Anson Chan, Michael Colditz, Eric Guazzo

29 Postoperative hypofractionated stereotactic radiotherapy for intracranial metastases: relationship between dose and local control

Mihir Shanker, Sidyarth Garimall, Michael Huo, Sarah Olson, Matthew Foote, Mark Pinkham

30 Understanding the Function of Ephrin A5 Signalling in Adult Brain Cancer

Rochelle Dsouza, Seckin Akgül, Fiona Smith, Rosalind Jeffree, Po-Ling Inglis, Andrew Boyd, Bryan Day

ORAL ABSTRACTS

24

Second interim and 1st molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion

<u>Anna Nowak¹</u>, Helen Wheeler², Mark Rosenthal³, Michael Back^{4,2}, Rosalind Jeffree^{5,6}, John Simes⁷, Sanjeev Gill⁸, Katharine Drummond³, Gail Ryan³, Anthony Dowling⁹, Rosemary Harrup¹⁰, Lawrence Cher¹¹, Robyn Leonard⁴, Thierry Gorlia¹², Vassilis Golfinopoulos¹², Johann Kros¹³, Sara Erridge¹⁴, Michael Vogelbaum¹⁵, Brigitta Baumert¹⁶, Martin van den Bent¹³

¹University of Western Australia, Perth, Australia.

²Royal North Shore Hospital, Sydney, Australia.

³University of Melbourne, Melbourne, Australia.

⁴University of Sydney, Sydney, Australia.

⁵Kenneth G. Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Herston, Australia.

⁶University of Queensland, Brisbane, Australia.

⁷NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia.

⁸Monash University, Melbourne, Australia.

⁹St Vincents Hospital, M, Australia.

¹⁰The Royal Hobart Hospital, Hobart, Australia.

¹¹The Austin Hospital, Melbourne, Australia.

¹²European Organisation for Research and Treatment of Cancer, Brussels, Belgium.

¹³Erasmus Medical Centre, Rotterdam, Netherlands.

¹⁴The University of Edinburgh, Edinburgh, United Kingdom.

¹⁵Moffit Cancer Centre, Tampa, USA.

¹⁶University Maastricht, Maastricht, Netherlands

Abstract

Background. The first CATNON interim analysis showed benefit from adjuvant (adj) temozolomide (TMZ) on overall survival (OS) but remained inconclusive about concurrent (conc) TMZ. A second interim analysis was planned after 356 events.

Methods. CATNON randomized 751 adults with newly diagnosed non-codeleted anaplastic glioma in a 2x2 factorial design to either 59.4 Gy radiotherapy alone; radiotherapy with concTMZ; radiotherapy and 12 cycles adjTMZ or radiotherapy with both concTMZ and adjTMZ. *MGMT* promoter methylation (*MGMT*meth) status was re-assessed and Isocitrate dehydrogenase 1 and 2 (IDH) mutation (mt) status was assessed.

Results. With median follow-up 56 months and 356 events, the hazard ratio (HR) for OS adjusted for stratification factors after concTMZ was 0.968 (99.1% CI 0.73, 1.28). 5year OS was 50.2% with and 52.7% without concTMZ (95% CI [44.4, 55.7] and [46.9, 58.1]). 335 (70%) of 480 assessed cases had IDHmt. Median OS was 19 mo in IDHwt and 116 mo in IDHmt.

Table: HR for OS after concTMZ (known IDH status).

	n	Events	HR [95% CI]	interaction test
IDH				
wt	145	120	1.27 [0.89, 1.82] p = 0.19	
mt	335	92	0.67 [0.44, 1.03] p = 0.06	p = 0.016

IDHmt predicted benefit from adjTMZ (IDHmt HR: 0.41, 95% CI 0.27, 0.64; IDHwt: HR 1.05, 95% CI 0.73, 1.52; interaction test p = 0.001).

In IDHmt patients receiving adjTMZ, HR for OS after concTMZ was 0.71 (95% CI 0.35, 1.42, p=0.32). *MGMT*meth was found in 288/410 assessed cases (70%), interaction test for concTMZ (p = 0.092) and adjTMZ (p = 0.166) did not reach statistical significance.

Conclusions. In the entire cohort, concTMZ did not increase OS. However, in IDHmt tumours a trend towards benefit of concTMZ is present. AdjTMZ increased OS in IDHmt but not IDHwt tumors. Further analyses and follow-up will allow full efficacy assessment in molecular subgroups.

15

DeepSurvNet: Deep Survival Convolutional Network for Brain cancer Survival Rate Classification based on Histopathological Images

<u>Amin Zadeh Shirazi</u>¹, Eric Fornacieri², Narjes Sadat Bagherian³, Lisa Ebert¹, Barbara Koszyca⁴, Guillermo Gomez¹

¹Centre for Cancer Biology, Adelaide, Australia.

²Dept. of Mathematics of Computation, University of California, Los Angeles, USA.

³Dept. of Ophthalmology, Mashhad University of Medical Sciences, Mashhad, Iran, Islamic Republic of.

⁴SA Pathology, Royal Adelaide Hospital, Adelaide, Australia

Abstract

AIMS: Use Artificial Intelligence methods to analyze histopathological whole slide images of hematoxylin and eosin (H&E) stained biopsies. Slide images contain valuable information with relation to brain cancer disease and its clinical outcomes, but still there are no highly accurate automated methods to correlate histolopathological images with brain cancer patients' survival. This can help in scheduling patients therapeutic treatment and allocate time for preclinical studies to guide personalized treatments.

METHODS: We developed a new classifier namely DeepSurvNet powered by deep convolutional neural networks to accurately classify in 4 classes brain cancer patients' survival rate based on histopathological images (Class I: 0-6 months, Class II: 6-12 months, Class III: 12-24 months and Class IV: >24 months survival after diagnosis, Figure 1). After training and testing of DeepSurvNet model on a public brain cancer dataset, The Cancer Genome Atlas, we have generalized it using independent testing on unseen samples collected in local hospitals in Adelaide.

RESULTS: Using DeepSurvNet we obtained precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable tool for brain cancer patients' survival rate classification based on histopathological images. Moreover, analysis of the frequency of mutations in patient-samples with different survival rates revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a different genetic fingerprint associated to patient survival.

CONCLUSION: We conclude DeepSurvNet constitutes a new artificial intelligence tool to assess the survival rate in brain cancer.

Primary Diagnosis	Patient ID	Dead Time (Month)	
Glioblastoma	TCGA-12-0657	0	
Glioblastoma	TCGA-19-2624	0	
Glioblastoma	TCGA-41-4097	0	10 9 6 10 Ser 5 10 5
Digodendroglioma, anaplastic	TCGA-HT-7616	0	
Glioblastoma	TCGA-06-0201	0	
Glioblastoma	TCGA-06-0213	1	Image Classification using
Glioblastoma	TCGA-02-0439		image classification using
Glioblastoma	TCGA-19-0962		DeepSurvNet
Glioblastoma	TCGA-08-0392	-	
Glioblastoma	TCGA-06-0219	1	
Mixed glioma	TCGA-E1-A7YU	1	Charge 1 and an and an an
Glioblastoma	TCGA-41-2571	1	Class 2 Class 3 Class 4
Glioblastoma	TCGA-06-0750	1	
Glioblastoma	TCGA-14-1455	1	10
Glioblastoma	TCGA-14-1794	1	
Glioblastoma	TCGA-41-3392	1	
Glioblastoma	TCGA-19-2621	1	.8 1
Glioblastoma	TCGA-14-1396	1	
Glioblastoma	TCGA-14-1453	1	
Oligodendroglioma, NOS	TCGA-DU-6400	1	<u>Ĕ</u> .6•
Glioblastoma	TCGA-08-0352	1	2
Glioblastoma	TCGA-14-0813	1	
Glioblastoma	TCGA-06-6391	1	5 .4 L
Gliphlastoma	TCGA-28-1755	2	5
Chobiostorina	T001 01 5010	2	
Glioblastoma	1CGA-81-5910		

4

Targeted drug delivery reduces brain metastases

Joanna Macdonald¹, Delphine Denoyer^{2,3}, Ingrid Burvenich^{2,3}, Normand Pouliot^{2,3,4}, <u>Sarah Shigdar¹</u>

¹Deakin University, Geelong, Australia.

²ONJCRI, Melbourne, Australia.

³La Trobe University, Melbourne, Australia.

⁴The University of Melbourne, Melbourne, Australia

Abstract

Prognosis for patients diagnosed with brain metastases is poor, with survival time measured merely in months. This can largely be attributed to the limited treatment options capable of reaching the tumour as a result of the highly restrictive blood-brain barrier. While methods of overcoming this barrier have been developed and employed with current treatment options, the majority are highly invasive and non-specific treatments, leading to severe neurotoxic side effects. A novel approach to address these issues is the development of therapeutics targeting receptor mediated transport mechanisms on the BBB endothelial cell membranes. We have developed aptamers as targeted delivery agents that can also cross the blood brain barrier. Aptamers are smaller than antibodies, and thus can more

Survival in months

effectively deliver drugs into the tumour. We have combined two aptamers for the targeted delivery of chemotherapeutics to brain metastases which can cross the blood brain barrier and specifically target cancer cells. Using this approach, we intercalated doxorubicin into the bifunctional aptamer targeting the transferrin receptor on the blood brain barrier and epithelial cell adhesion molecule (EpCAM) on the metastatic cells. The ability of the aptamerdoxorubicin to transcytose the blood brain barrier and selectively deliver the drug to EpCAM-positive tumour cells was evaluated in an in vitro model and confirmed in vivo. We show that co-localised aptamer and doxorubicin fluorescent signals are clearly detectable within the brain lesions 75 minutes post administration. Additionally, following a short treatment schedule, brain metastases were shown to decrease following bifunctional-aptamerdoxorubicin treatment, as compared to control or free drug. As well, metastases decreased in bone and ovaries following treatment. Collectively, the results from this study demonstrate that through intercalation of a cytotoxic drug into the bifunctional aptamer, a therapeutic delivery vehicle can be developed for the specific targeting of epithelial cell adhesion molecule-positive brain and systemic metastases.

26

Building the Bridge: The value of consumer co-design in brain cancer resource development

<u>Dianne Legge</u>¹, Steffi Renehan¹, Emma Daly², Louise Saliba³, Paula Howell⁴

¹Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Melbourne, Australia.

²Cabrini Health, Melbourne, Australia.

³Monash Health, Melbourne, Australia.

⁴North East Integrated Cancer Service, Melbourne, Australia

Abstract

Background

Improved survival has raised awareness of the impacts and challenges confronting people with grade 2/3 brain cancers. To assist people re-engage with a productive and purposeful life, the *Building the Bridge Project* partnered with Victorian consumers, health professionals and lead cancer agencies to create a resource focused on what happens after treatment. How to access timely and appropriate help, and how to get back to fundamental life roles was the project target. Project partners were Austin, Cabrini and Monash Health and NEMICS.

Aim

Develop a tailored, accessible information resource for brain cancer survivors that supports self-management and provides a tool for health professionals to use in survivorship conversations.

Methods

Experience-based co-design placed survivor experiences central to the project. During stage one, focus groups with 27 consumers and carers defined high prevalence issues experienced when returning to life post-treatment. Consultation with neuro-oncology professionals and project partners refined themes and explored information accessibility. Further consumer consultation scoped resource format. Stage two developed resource content consistent with themes identified in the data. Further consumer feedback was incorporated prior to design. Final stage tested and evaluated the resource with consumers not previously engaged in co-design.

Results

Building the Bridge to Life with Brain Cancer is a 130-page hard copy, spiral bound resource embedded with patient stories, tips, strategies, checklists and targeted resources to facilitate re-engage in everyday life. Accessible language and non-medicalised content is presented in small chunks for ease of reading. Evaluation found high levels of acceptability, relevance and usefulness.

Conclusion

Consumer co-design placed the voice of the person with brain cancer at the centre of resource development. This was an important and powerful approach, yielding a relevant and accessible resource aimed at improving people's capacity to self-manage their condition, access appropriate supports and re-engage in community life.

POSTER ABSTRACTS

1

A case of pituitary carcinoma successfully treated with immune checkpoint inhibitor therapy

<u>Lydia S. Lamb</u>^{1,2}, Ann I. McCormack^{1,2,3}, David M. Thomas^{2,3}, Hao-Wen Sim^{3,4,5}

¹Department of Endocrinology, St Vincent's Hospital, Sydney, Australia.

²Garvan Institute of Medical Research, Sydney, Australia.

³St Vincent's Clinical School, University of NSW, Sydney, Australia.

⁴Kinghorn Cancer Centre, Sydney, Australia.

⁵Central Clinical School, University of Sydney, Sydney, Australia

Abstract

Background

Pituitary carcinomas are rare aggressive tumours, defined by the presence of craniospinal or systemic metastases, and are associated with mortality rates up to 66% at 12 months. There is a paucity of effective treatment options. Immune checkpoint inhibitors have proven clinical utility across multiple malignancies, although their role in pituitary carcinoma is unknown. Here we describe a case of pituitary carcinoma responsive to immune checkpoint inhibitor therapy.

Case report

A 72yo female with progressive non-functioning pituitary carcinoma and dural metastases underwent a series of treatments including transsphenoidal resection (2014, 2015, 2016 and 2018), radiotherapy (2017 and 2018) and temozolomide (2018). Despite these treatments, there was inexorable disease progression. Extrapolating from an isolated case report of immune response in a ACTH-secreting hypermutated pituitary carcinoma, our patient received immunotherapy with ipilimumab 3mg/kg and nivolumab 1mg/kg on a three-weekly basis. Ipilimumab was discontinued after two cycles due to autoimmune nephritis, and maintenance nivolumab 3mg/kg on a two-weekly basis continues. There was marked clinical and radiological response of the primary pituitary carcinoma and all metastatic lesions, which is still durable at 7 months. The tumour was mismatch repair-proficient, PD-L1 <1%, had average mutational burden (6.8 Mut/Mb) and harboured no actionable variants based on genomic profiling and Molecular Tumour Board review.

Conclusion

Immune checkpoint inhibitor therapy may present a novel treatment option for pituitary carcinoma, which is not limited to hypermutated tumours. This may be worth pursuing in the prospective clinical trial setting.

2

Radionecrosis in Patients Receiving Stereotactic Radiosurgery for Brain Metastases

<u>Philippa Ell</u>¹, Yael Barnett², Peter Earls³, Louise Emmett⁴, Michael Rodriguez³, Cecelia Gzell⁵

¹Radiation Oncology, St Vincent's Hospital, Darlinghurst, NSW, Australia.

²Dept of Radiology, St Vincent's Hospital, Darlinghurst, NSW, Australia.

³Dept of Pathology, St Vincents Hospital, Darlinghurst, NSW, Australia.

⁴Nuclear Medicine and Theranostics, St Vincent's Hospital, Darlinghurst, NSW, Australia.

⁵Radiation Oncology, Genesis Care, Darlinghurst, NSW, Australia

Abstract

Aim: To examine factors contributing to radiation necrosis (RTN) in patients receiving stereotactic radiosurgery (SRS) for brain metastases

Methods: Single institution series of 51 consecutive patients with intracranial metastases undergoing SRS. Follow-up imaging was on standard protocol of MRI 6 weeks post-treatment then 3 monthly thereafter.

Results: Median age at diagnosis 59 years (range 24-86) with median survival of 19.4 months (range 0.9-53.4). Demographics include 56.9% female, 43.1% male, and 9.8% (n=5) had brain metastases at the time of initial diagnosis. Histopathology included: lung 37.3%, breast 17.6%, melanoma 11%, colorectal 5.5%, and other malignancy 25.5% (adenoid cystic, sarcoma, prostate, transitional cell, and renal cell). Craniotomy was performed in 80% (N=41) of patients prior to SRS for at least one intracranial lesion. De novo SRS was delivered to 82 metastases (85%) and cavity SRS was delivered in 65 cases (44%)

Rate of RTN was 20% (n=10). Diagnosis was based on histopathology in 6 patients, MRI and FET-PET in 1 patient, and MRI alone in 3 patients. Patients with RTN had the following features: 50% (N=5) had concurrent systemic therapy (doublet therapies including Herceptin and pertuzumab, dabrafenib and trametinib, or androgen deprivation therapy). One patient with RTN also had whole brain radiotherapy to a dose of 30Gy/10# with a boost of 6Gy/3# to the tumour bed 11 months prior to SRS. Of the patients with RTN 60% (N=6) were asymptomatic and 40% (N=4) were symptomatic. Decompression surgery was needed in 4 patients for symptomatic relief.

Median survival of patients with RTN was 37.5 months (range 9-53) compared to 10.4 months (range 0.9-53.4) in patients without necrosis (P=0.0391).

Conclusion: RTN occurred in 20% of included patients in this series. The presence of necrosis may be prognostic for improved median survival. Further analyses are planned to investigate other contributing factors.

3

The "ART" of symptoms: Symptomax, a novel physicianassisted mobile application with artificial intelligence for symptom tracking, as a front-end for applied radiation therapeutics (ART)

<u>Abhishek Puri</u>¹, Amit Dixit², Naren Radhakrishan², Anshuman Nanda², P Mohandass¹

¹Fortis Hospital, Mohali, India.

²XY Square, Gurgaon, India

Abstract

Aims: Symptomax is a novel, physician-assisted, mobile application that incorporates human interface guidelines for brain tumour affected patients (BTAP). It is a first of its kind frontend for applied radiation therapeutics (ART).

Introduction: BTAP is a unique subset of chronic cancer affected individuals as they suffer from a higher incidence of recall bias and forgetfulness after definitive therapy. Besides, missed medications leading to emergent admissions and morbidity, it increases the burden on resourceconstrained healthcare systems.

Methods: Symptomax is available for Android and iOS platforms with HIPAA compliance for personal health information. Patients sign up for a central database that allows tracking symptoms in real-time, formulating treatment plans, automating reminders for medications and comprehensive lab investigations. It also has a hosted interactive community to assist in a smooth progression from "hospital to home care paradigm" that allays anxieties of caregivers related to treatment effects. Gamification mechanisms will ensure continuous user engagement.

Integrated machine learning algorithms will initially gather insights from symptoms; subsequently from radiological images, radiation planning datasets and genetic sequencing in a planned phased rollout.

Symptomax is designed to be financially self-sustaining. Other researchers can access anonymised datasets. It can also be integrated with hospital and pharmaceutical companies' resource planning systems as it would provide predictive analytics with a mechanism for appointments and pharmacy refills.

Conclusions: Symptomax addresses an unmet need to quantify symptoms in real-time, identify patterns and provide quality of life studies.

5

Soft substrates mechanically matched to brain tissue reveal brain tumour reveal resistance to kinase inhibitors

Victoria Prior^{1,2}, Farhana Sarker^{1,2}, Joey Vessey¹, Kaitlyn Griffin¹, Penny Vogelzang¹, Thomas Grundy^{1,2}, Kylie Turner¹, Peta Bradbury¹, Camilla Mitchell¹, Justin Cooper-White^{3,4}, Bryan Day⁵, Terrance Johns⁶, <u>Geraldine O'Neill^{1,2}</u>

¹Children's Cancer Research Unit, The Children's Hospital at Westmead, Sydney, Australia.

²Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia.

³The University of Queensland, Brisbane, Australia.

⁴5CSIRO, Manufacturing Flagship, Biomedical Manufacturing Program, Clayton, Australia.

⁵QIMR Berghofer Medical Research Institute, Brisbane, Australia.

⁶Hudson Institute of Medical Research, Clayton, Australia

Abstract

AIMS: Seminal studies in the tissue engineering field have revealed that culturing stem cells on matrices which match the softness of brain induced the cells to differentiate into neuronal lineages, independently of any other external factors. While a role for biomechanical forces has begun to be addressed in a number of solid cancer types, to date there has been limited consideration of this parameter in brain cancer. We hypothesized that mechanosensing may alter the biology and response of glioblastoma (GBM) brain cancers to anti-cancer treatments.

METHODS: This was tested using combinations of kinome screening and materials engineered to recapitulate the brain's soft features, together with primary patient-derived glioblastoma (GBM) cells cultured in defined media to maintain *in vivo* characteristics.

RESULTS: Kinome screening identified a number of mechanosensitive kinases, including EGFR, a major drug target in GBM. We demonstrate that GBM patient lines are significantly resistant to EGFR inhibitors when cultured on soft surfaces mimicking the brain's biomechanical features. Activation of MAPK signalling downstream of EGFR is significantly suppressed on soft substrates. Our studies suggest that the brain's biomechanical milieu is indeed an important determinant of GBM biology and response to anti-cancer treatments.

CONCLUSIONS: Our work suggests that assessment of the mechanopharmacology of putative treatments for GBM should be considered as part of the preclinical assessments in the progression of novel treatments to clinical trial.

START: A single-arm, phase IIa trial of the activity of seviteronel in patients with androgen receptor (AR)-positive central nervous system (CNS) tumours

Sarennya Pathmanandavel¹, Amy Prawira¹, Rasha Cosman¹, Subotheni Thavaneswaran¹, Cecilia Gzell², Benjamin Jonker², Jacob Fairhall³, Mark Winder², Yael Barnett², Pascal Bou-Haidar², Michael Rodriguez², Alistair Lochhead⁴, Peter Earls⁴, Svetlana Cherepanoff⁴, Rebecca Woollands¹, Lauren Armstrong¹, Jaime Parima¹, Anthony Joshua¹, Hao-Wen Sim¹

¹The KInghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, Australia.

²St Vincent's Hospital, Darlinghurst, Australia.

³St Vincent's Private Hospital, Darlinghurst, Australia.

⁴St Vincent's Pathology, Darlinghurst, Australia

Abstract

Background: Systemic treatments for CNS tumours such as glioblastoma (GBM) are limited. AR is an established therapeutic target in prostate cancer, and recent data support a role in AR-positive non-prostate cancers¹. The AR gene was found to be amplified in 27% and 38% of GBMs in men and women, respectively². Furthermore, AR gene transcription levels are elevated in GBMs compared to other tumour types (see figure 1)³. Thus the AR is a novel target for treatment of GBM. Seviteronel is a novel dual-selective CYP17 lyase inhibitor and direct AR inhibitor that penetrates the blood-brain barrier. Preclinical data revealed that seviteronel can inhibit the growth of AR-positive GBM cell lines at achievable in vivo concentrations³. This suggests that seviteronel may be an effective treatment option for AR-positive CNS tumours.

Figure 1. AR transcription levels as determined by RNAseq for different tumour types (Werner et al. 2018).

Methods: START is a single-arm phase IIa trial to investigate the activity of seviteronel in any CNS tumour subtype selected by AR positivity, confirmed by immunohistochemistry (AR>0%). Other key eligibility criteria: failure or intolerance of all standard anticancer therapy. Primary endpoint: overall response rate (ORR). Secondary endpoints: overall and progression-free survival; safety; health-related quality of life.

Seviteronel will be administered 450 mg po daily in combination with dexamethasone 0.5 mg po daily (and GnRH analogue depot injection every 3 months for men and pre-menopausal women), until failure or intolerance. 16 patients will be enrolled over 48 months (A'Hern singlestage design, 10% significance level, 75% power, to detect ORR ≥30% while rejecting ORR ≤10%).

START is open at The Kinghorn Cancer Centre, St Vincent's Hospital Sydney. Optionally, pre-screening for AR immunohistochemistry can be performed prior to referral, and this will be confirmed centrally. Collaborations are sought for future confirmatory studies. AR-positive rate on pre-screening: currently 9 of 24 patients. First patient accrued: November 21, 2018. ClinicalTrials.gov NCT number: NCT03600467.

References

1. Munoz J, Wheler JJ, Kurzrock R. Androgen receptors beyond prostate cancer: an old marker as a new target. Oncotarget. 2015 Jan 20;6(2):592-603.

 Zalcman N, Canello T, Ovadia H, Charbit H, Zelikovitch B, Mordechai A, Fellig Y, Rabani S, Shahar T, Lossos A, Lavon I. Androgen receptor: a potential therapeutic target for glioblastoma. Oncotarget 2018 9:19980-19993.

3. Werner C, Nna U, Sun H, et al. Targeting androgen signaling in glioblastoma using seviteronel, a CYP17 lyase and androgen receptor inhibitor, alone and in combination with radiation (poster). Society of Neuro-Oncology Annual Meeting. 2018.

7

Developing a National Paediatric and Adult Brain Cancer Registry: A Clinical Feasibility Study

Eric Browne¹, Robyn Leonard², Michael Besser³, Anna K. Nowak^{4,5}, Claire Vajdic⁶, Timothy Churches⁷, Hui Gan^{8,9}, Craig Gedye^{10,11}, Nicholas G. Gottardo^{12,13,14}, Chris J. Fraser^{15,16}, John Zalcberg¹⁷, Mythily Sachchithananthan², <u>Rosalind L.</u> Jeffree^{18,19}

¹Montage Systems, Trinity Gardens, Australia.

²Brain Cancer Biobanking Australia, National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, Australia.

³University of Sydney, Sydney, Australia.

⁴Sir Charles Gardiner Hospital, Perth, Australia.

⁵Medical School, University of Western Australia, Perth, Australia.

⁶Centre for Big Data Research in Health, UNSW, Sydney, Australia.

⁷South-Western Sydney Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.

⁸Cancer Clinical Trials Unit, Austin Health, Heidelberg, Australia.

⁹School of Cancer Medicine, Latrobe University, Heidelberg, Australia.

¹⁰Calvary Mater Hospital, Newcastle, Australia.

¹¹University of Newcastle, Newcastle, Australia.

¹²Department of Pediatric and Adolescent Clinical Hematology and Oncology, Perth Children's Hospital, Perth, Australia.

¹³Telethon Kids Institute, Perth, Australia.

¹⁴University of Western Australia, Perth, Australia.

¹⁵Australian and New Zealand Children's Haematology-Oncology Group, Clayton, Australia.

¹⁶Queensland Children's Hospital, South Brisbane, Australia.

¹⁷School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

¹⁸Kenneth G. Jamieson Department of Neurosurgery, Royal Brisbane & Women's Hospital, Herston, Australia.

¹⁹University of Queensland, Brisbane, Australia

Abstract

BACKGROUND AND PURPOSE:

Brain cancer is a significant cause of death and disability but the nuanced landscape of brain cancer incidence, treatment patterns and outcomes is not well understood across Australia.

A Brain Cancer Clinical Registry would:

- collect, collate and report clinical quality metrics
- provide feedback to clinicians
- assist researchers with clinical information
- facilitate clinical trials

- inform the community and government about brain cancer incidence and outcomes.

This study was carried out to identify the possible scope and mechanisms for development of an Australian National Paediatric and Adult Brain Cancer Clinical Registry.

METHODS:

Data was collated from a literature review, clinician consultations, review of existing information systems at different institutions across Australia, and case studies of local and international clinical registries. This data was used to develop a Brain Cancer Clinical Registry Framework and publish a Feasibility Study Report (1)

RESULTS:

This scoping study identified that pathways for the treatment of brain cancer are complex, iterative and involve multiple providers and locations. Administrative, diagnostic, treatment and outcomes data are scattered (and duplicated) across a range of paper and electronic systems. Based on this information different repository models were developed.

CONCLUSIONS:

Three potential repository models were identified for consideration:

1. A single national repository, or

2. A two tier repository with state registries feeding into a national registry

3. A two tier repository with local hospital or HHS data collections feeding into a national registry.

BCBA is now developing a preliminary set of clinical quality indicators to inform stage one – the quality of care component – of the registry and inviting pilot sites to implement data collection. This is a timely initiative, coinciding with the publication in May of the "Draft National Clinical Quality Registry Strategy" by the Australian Government Department of Health (2).

References

- Eric Browne (2019) Feasibility Study for a National Paediatric and Adult Brain Cancer Clinical Registry.
 © 2019 Brain Cancer Biobanking Australia, bcba.org.au
- <u>https://www1.health.gov.au/internet/main/publis</u> <u>hing.nsf/Content/Draft National %20CQR Strateg</u> <u>y</u> accessed 2nd August 2019

8

Management and visual outcomes in optic nerve sheath meningioma - a multicentre study and pooled data analysis

Chris Ovens¹, Benjamin Dean², <u>Cecelia Gzell^{3,4}</u>, Nitya Patanjali^{5,6}, Benjamin Jonker^{7,5,6}, Michael O'Connor⁵, Patrick Estoesta⁵, Tatiana De Martin³, Clare Fraser^{8,9}

¹Discipline of Ophthalmology and Eye Health, the Sydney Medical School, the Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

²School of Medicine, Sydney, The University of Notre Dame Australia, Sydney, Australia.

³GenesisCare, Alexandria, NSW, Sydney, Australia.

⁴Macquarie University, Macquarie, NSW, Sydney, Australia.

⁵Chris O'Brien Lifehouse, Sydney, Australia.

⁶Royal Prince Alfred Hospital, Sydney, Australia.

⁷RPA Institute of Academic Surgery, University of Sydney, Sydney, Australia.

⁸Save Sight Institute, Faculty of Health and Medicine, The University of Sydney, Sydney, Australia.

⁹Department of Ophthalmology, Macquarie University, Macquarie, NSW, Sydney, Australia

Abstract

Aims: Optic Nerve Sheath Meningiomas (ONSMs) are benign neoplasms accounting for 2% of orbital tumours. Radiotherapy has shown favourable outcomes compared with surgery or observation, however the optimal modality of radiotherapy remains unknown.

Methods: We performed a retrospective analysis of visual outcomes and side effects in ONSM patients treated with radiotherapy at three centres in Sydney, Australia, between 2000 and 2016 (n = 15). Pooled data analysis of available

studies was performed, allowing comparison between different radiotherapy modalities.

Results: In our cohort, a significant majority experienced improved visual field outcomes (10/13 > 3 dB mean deviation improvement, p = 0.046), and stable or improved visual acuity (1/13 ³2 Snellen lines decline, p = 0.0017) and colour vision (0/6 ³1 Ishihara plate decline, p = 0.015) after fractionated stereotactic radiotherapy (either VMAT or IMRT, mean follow up = 46.5 months). 2/15 patients had complete documented neuro-ophthalmological review preand post-treatment. Pooled data analysis with strict inclusion criteria revealed poorer visual acuity in 3D-CRT compared to fractionated stereotactic radiotherapy (fSRT, see Fig 1). When all published studies were included, stereotactic radiosurgery (SRS) was equivalent to fractionated methods (3D-CRT, FSRT, IMRT) in visual outcomes. Rates of long-term side effects were lowest with SRS, and 3D-CRT had significantly higher rates of lacrimal dysfunction and cataract (see Fig 2). IMRT was more likely to improve visual outcomes, while FSRT and SRS were more likely to stabilise visual outcomes.

Conclusion: Our results favour fSRT, IMRT or VMAT over 3D-CRT in offering superior visual outcomes post-treatment. SRS appears to be a viable treatment option for ONSM patients despite higher radiation doses. Where preserving or improving vision is the goal of treatment, we advocate for thorough neuro-ophthalmological assessment pre- and posttreatment.

Figure 1 - Outcomes comparing 3D-CRT and fSRT. * = significant difference

Figure 2 - Side-effect rates between radiotherapy subtypes

Innovative 'omics approaches reveal the exciting promise of extracellular vesicle profiling as a blood test for monitoring glioma patients

Kimberley L. Kaufman^{1,2,3,4}, Susannah Hallal^{1,2,4}, Heng Wei^{3,4},

Maggie Lee^{3,4}, Hao-Wen Sim^{5,6,7}, Brindha Shivalingam^{1,4},

Michael E. Buckland^{2,3,4}

¹Neurosurgery Department, Chris O'Brien Lifehouse, Camperdown, NSW

²Discipline of Pathology, School of Medical Sciences, University of Sydney, Camperdown, NSW

³Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW

⁴BrainStorm Brain Cancer Research Group at the Brain and Mind Centre, Sydney University and Sydney Local Health District

⁵Department of Medical Oncology and NHMRC Clinical Trials Centre, Chris O'Brien Lifehouse, Camperdown, NSW

⁶Central Clinical School, University of Sydney, Camperdown, NSW

⁷The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW

Abstract

Introduction: There is a real need for biomarkers that can indicate glioma disease burden and inform clinical management, particularly in the recurrent glioblastoma setting where treatment-associated changes can confound tumour surveillance methods. The last decade has seen a rapid rise in extracellular vesicle (EV) research, describing integral roles in cancer biology [1-2] and identifying EVs as promising biomarker reservoirs for monitoring and stratifying patients [3-6]. EVs (30-1000 nm membranous particles) can cross the blood-brain-barrier into the periphery where they are stable and readily-accessible. As such, non-invasive sampling of tumour-derived molecules cargoed in EVs hold enormous potential for revolutionising how glioma tumours are assessed *in situ*.

Methods: We show that molecular profiling of EVs captured from patient blood is a promising approach to assess tumours in real-time. With access to modern instrumentation, we have developed innovative approaches to profile the miRNA, proteomic and metabolomic signatures within blood-EVs that can distinguish glioma subtypes from healthy and non-glioma controls and indicate tumour burden. This includes our innovative EV proteome profiling platform using state-of-the-art 'SWATH' mass spectrometry, powered by the development of a custom, glioma EV spectral library detailing reference sequences for 8662 protein species.

Results: In a pilot study, absolute quantitation of 4909 plasma-EV proteins (q-value<0.05) was achieved, which is the most comprehensive EV proteomic coverage to date. Of these measured EV-associated proteins, 463 changed significantly across glioma and non-glioma cohorts (*adjust*.p<0.05; n=49). Principal component analysis showed excellent discrimination between the patient groups studied (**Figure 1**), highlighting the promise of this approach as an accurate, sensitive tumour monitoring method.

Conclusions: Objective blood-based measurements of glioma tumour activity will support the implementation of next-generation, patient-centred therapies and are ideal surrogate endpoints for recurrent progression that would allow clinical trial protocols to be more dynamic and adapt to the individual patient and their cancer.

References

[1] S. Hallal, D.M. Mallawaaratchy, H. Wei, S. Ebrahimkhani, B.W. Stringer, B.W. Day, A.W. Boyd, G.J. Guillemin, M.E. Buckland and K.L. Kaufman, "Extracellular vesicles released by glioblastoma cells stimulate normal astrocytes to acquire a tumour-supportive phenotype via p53 and MYC signalling pathway" *Molecular Neurobiology*, 2018

[2] C. Li, S. Eaton, P. Young, M. Lee, R. Shuttleworth, D. Humphreys, G. Grau, V. Combes, M. Bebawy, J. Gong, M.E. Buckland, C. Suter, "Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. *RNA Biology*, 2013

[3] S. Hallal, S. Ebrahimkhani, B. Shivalingam, M. Graeber, K.L. Kaufman^{*} and M.E. Buckland^{*}, "The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring" *Brain Tumor Pathology*, 2019

[4] S. Ebrahimkhani, F. Vafaee, S. Hallal, H. Wei, M.Y.T. Lee, P.E. Young, L. Satgunaseelan, H. Beadnall, M.H. Barnett, B. Shivalingam, C.M. Suter, M.E. Buckland and K.L. Kaufman, "Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis" *npj Precision Oncology*, 2018 [5] S. Hallal, B.P. Russell, H. Wei, M. Lee, C.W. Toon, J. Sy, B. Shivalingam, M.E. Buckland and K.L. Kaufman, "Proteome profiling of extracellular vesicles from neurosurgical aspirates identifies Chaperonin Containing TCP1 Subunit 6A (CCT6A) as a potential glioblastoma biomarker with prognostic significance" *Proteomics, Special Issue: Extracellular Vesicles and Exosomes* 2018

[6] D.M. Mallawaaratchy, S. Hallal, B. Russell, L. Ly, S. Ebrahimkhani, H. Wei, R.I. Christopherson, M.E. Buckland, K.L. Kaufman, "Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease" *Journal of NeuroOncology*131(2):233-44 2017

10

Disruption of the Blood-Brain Barrier using MR-guided Focused Ultrasound Increases Antibody Delivery to Non-Enhancing High Grade Glioma

<u>Caterina Brighi</u>^{1,2}, Lee Reid³, Alison White^{1,2,3}, Zara Bruce⁴, Bryan Day⁴, Stephen Rose³, Andrew Whittaker^{1,2}, Simon Puttick³

¹Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.

²ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia.

³CSIRO Probing Biosystems Future Science Platform, Brisbane, Australia.

⁴Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia

Abstract

High grade glioma (HGG) remains one of the most aggressive types of brain cancers with a very poor median survival time of 14 months following current standard of care. A major challenge in improving prognosis is the inability of current therapeutic strategies to address a clinically significant burden of infiltrating tumour cells that extend beyond the margins of the primary tumour mass and cannot be surgically excised nor efficiently targeted by chemotherapy or radiation therapy. Therapeutic intervention for this population of cells is significantly hampered by the presence of an intact blood brain barrier (BBB).

Aims: In our work, we perform a pre-clinical trial investigating the efficiency of MR-guided Focused Ultrasound (MRgFUS) to temporarily open the BBB and achieve delivery of a targeted antibody in infiltrating tumour regions.

Method: In our study, we use structural MRI, dynamiccontrast enhancement (DCE) MRI and histology to fully characterise the MR enhancing properties of a patient derived orthotopic mouse model of HGG, and develop a robust and reproducible model of non-enhancing HGG. Using this model, we evaluate for the first time the efficacy of MRgFUS to increase the concentration of a ⁸⁹Zr radiolabelled antibody in non-enhancing HGG tissue by use of PET/CT imaging techniques.

Results: Our results show that using MRgFUS leads to a significant increase in both BBB opening and antibody uptake in the non-enhancing HGG tissue, and that antibody uptake is linearly correlated with the extent of BBB opening induced by MRgFUS in the non-enhancing tumour (**Figure 1**).

Conclusions: Overall, our study demonstrates that the use of MRgFUS would lead to an increased efficacy of current and emerging chemotherapies and opens up the possibility of using MRgFUS in combination with systemic therapies that have previously proved ineffective in HGG due to poor BBB penetration.

Figure 1. Plots of quantitative analysis of FUS-induced degree of BBB opening and values of antibody tumour uptake in nonenhancing HGG. a) The plots shows a comparison of the extent of FUS-induced BBB opening in the FUS group between pre- and post-FUS treatment. The FUS treatment significantly increased extent of BBB opening in the tumour in all of the mice (p=0.0078, Wilcoxon test). b) The plot shows a direct linear correlation between the total percentage of antibody tumour uptake in the FUSsed non-CE tumour and the total volume of the FUSsed non-CE tumour of the FUS group mice. The statistically significant linear correlation (Pearson r coefficient 0.8621, p=0.0059) between the two parameters implies that antibody tumour uptake can be proportionally increased by increasing the volume of tumour targeted with FUS. c) The plot shows a comparison of the mean value of antibody uptake in the targeted non-CE tumour between the CTRL group and the FUS group. The significantly higher values of the mean antibody tumour uptake (p=0.0013, Mann-Whitney t-test) in the targeted non-CE tumour of the FUS mice compared with the control mice demonstrates the ability of the FUS treatment to enhance antibody delivery in otherwise inaccessible regions of the tumour.

Targeting EphA3 with radioimmunotherapy or antibodydrug conjugates is an effective therapy for GBM

<u>Carolin Offenhäuser</u>¹, Fares Al-Ejeh¹, Simon Puttick², Kathleen Ensbey¹, Zara Bruce¹, Paul Jamieson¹, Fiona Smith¹, Brett Stringer¹, Benjamin Carrington¹, Adrian Fuchs², Craig Bell², Rosalind Jeffree³, Stephen Rose⁴, Kristofer Thurecht², Andrew Boyd¹, Bryan Day¹

¹QIMR Berghofer Medical Research Institute, Brisbane, Australia.

²The University of Queensland, Brisbane, Australia.

³Royal Brisbane and Women's Hospital, Brisbane, Australia.

⁴CSIRO, Brisbane, Australia

Abstract

Despite aggressive therapy, prognosis for glioblastoma (GBM) remains poor and novel therapeutic targets for drug development are urgently needed. We recently characterised the receptor tyrosine kinase EphA3 as a functional tumour-specific therapeutic target in glioblastoma (GBM), where it is most highly expressed on glioma stem cells (GSCs) and has a functional role in maintaining selfrenewal and tumourigenesis. Recent findings by others have further demonstrated the importance of EphA3 in GBM and shown that receptor levels are significantly elevated in recurrent disease. To therapeutically target EphA3-positive tumour tissue we developed EphA3 antibody drug conjugate (ADC) and radioimmunotherapy approaches. In vitro testing confirmed the effectiveness of EphA3 ADCs conjugated to either auristatin-E (MMAE) or maytansine (USAN) to halt GBM cell growth and induce apoptosis. In vivo brain uptake studies, using PET imaging, show EphA3 antibodies are effectively delivered across the blood brain barrier and accumulate specifically at the tumour site with no observed normal brain reactivity. Both EphA3 ADC and radioimmunotherapy approaches effectively targeted orthopically engrafted GBM tumours. A robust anti-tumour response with no toxicity was observed leading to a significant increase in overall survival. These findings reveal the effectiveness of EphA3 pay loaded targeting strategies to induce a tumour-specific anti-tumour response in GBM.

12

Multiparametric serial magnetic resonance imaging assessment of gross tumour volume and hippocampal changes over the course of adjuvant brain cancer radiotherapy

<u>Farhannah Aly</u>^{1,2,3}, Eng-Siew Koh^{2,1,3}, Robba Rai^{2,1,3}, Vanessa Estall^{2,3,4}, Gary P Liney^{1,2}, Michael B Barton^{1,2,3}, Lois C Holloway^{1,2,3,5,6}, Michael G Jameson^{1,2,3,5} ¹Ingham Institute for Applied Medical Research, Sydney, Australia.

²Liverpool and Macarthur Cancer Therapy Centre, Sydney, Australia.

³South Western Clinical School, University of New South Wales, Sydney, Australia.

⁴Western Sydney University, Sydney, Australia.

⁵Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.

⁶Institute for Medical Physics, School of Physics, The University of Sydney, Sydney, Australia

Abstract

Aims: Understanding the significance of anatomical and functional imaging changes during brain cancer radiation therapy (RT) is key to developing personalized adaptive radiotherapy (ART) approaches. This project aims to determine imaging predictors of brain tumour response. Anatomical and functional changes in gross tumour volume (GTV), tumour subvolumes and hippocampi (organ at risk affecting neurocognition) were assessed using multiparametric MRI during CNS RT.

Methods: This prospective pilot study involved 34 patients with glioma (high grade=18, low grade=5) and secondary brain cancer (n=11). Patients underwent imaging at RT planning (baseline-BL), mid-treatment (if receiving ≥25 daily fractions-FU1), at the end of RT (FU2) and four weeks post RT (FU3). The 3T Siemens Skyra MRI acquisition protocol included anatomical T1 and T2, diffusion weighted imaging (DWI), dynamic contrast enhancement (DCE), susceptibility weighted imaging (SWI) arterial spin labelling (ASL), and apparent diffusion coefficient (ADC) maps. GTV and hippocampi were manually contoured on the anatomical imaging at each time-point. Tumour subvolumes including enhancing tumour, necrotic area and oedema were also segmented using manual and automated techniques. Analysis was undertaken using Pyradiomics v2.2.0 to extract first order statistics for the segmented volumes.

Results: Over time, a reduction in GTV was demonstrated with mean BL volume 4.3 x10⁴mm³ compared to FU3 3.5 x10⁴mm³ (Figure 1). Similarly, hippocampal volumes decreased with mean BL volume of 2.34 x10³mm³ and FU3 of 1.95 x10³mm³. An increase in ADC was seen throughout the study time-points for the GTV. Patients with high grade glioma experiencing local recurrence, had a larger enhancing tumour subvolume with lower ADC values compared to those without documented local recurrence (Figure 2).

Conclusion: Linking functional information to tumour subvolumes may guide where to target radiation dose during ART process. The results of this pilot study will form the basis for a larger trial focusing on glioblastoma with multi-institution recruitment.

Figure 1. Tumour volume changes during study time-points. a) GTV, b) high grade glioma, c) low grade glioma, d) metastatic disease.

Figure 2. Enhancing tumour a) volume change b) ADC value change during study time-points for high grade gliomas.

DYRK1A and Rb cooperatively control the proliferationdormancy switch and therapy resistance in glioblastoma

Ariadna Recasens, Sean Humphrey, Lenka Munoz

University of Sydney, Sydney, Australia

Abstract

Glioblastoma, the most common and aggressive brain tumour, is propagated by stem-like cancer cells refractory to chemotherapy. We have identified that the incomplete killing of glioblastoma stem cells by chemotherapy is not caused by drug-resistant cells but rather by a fraction of cells that is able to resonate between proliferative drug-sensitive and dormant drug-tolerant states. Upon removal of the chemotherapeutic agents, dormant glioblastoma stem cells resumed proliferation.

To understand the molecular mechanisms that control the proliferation-dormancy plasticity, we performed proteomic and phosphoproteomic analysis as well as a panel of orthogonal mechanistic studies. We discovered that dualspecificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) and retinoblastoma (Rb) protein cooperate to control the proliferation-dormancy plasticity of glioblastoma stem cells. Intriguingly, the proliferation-suppressive DYRK1A and Rb signalling was detrimental to the efficacy of chemotherapy. Glioblastoma stem cells expressing Rb and DYRK1A were significantly more tolerant to cytotoxic drugs and transitioned to drug-tolerant dormant state. Inhibition of DYRK1A disrupted the proliferation-dormancy switch in Rb-deficient glioblastoma stem cells, rendering them sensitive to chemotherapy.

Our findings reveal for the first time that glioblastoma stem cells use tumour-suppressors Rb and DYRK1A to derange the effectiveness of chemotherapy. Our results also demonstrate that a wake-up strategy for Rb-deficient dormant glioblastoma stem cells using DYRK1A inhibitors might be of therapeutic value in combination with chemotherapy.

14

Australia and New Zealand Children's Haematology / Oncology Group (ANZCHOG): a novel pathway for enrolment of adolescent / young adult (AYA) patients with central nervous system (CNS) malignancies

John Heath^{1,2}, David Ziegler^{3,4,5}, Jordan Hansford^{6,7,8}, Nicholas Gottardo^{9,10,11}

¹Royal Hobart Hospital, Hobart, Australia.

²University of Tasmania, Hobart, Australia.

³Sydney Children's Hospital, Sydney, Australia.

⁴Kids Cancer Centre, Sydney, Australia.

⁵University of New South Wales, Sydney, Australia.

⁶Royal Children's Hospital, Melbourne, Australia.

⁷Murdoch Childrens Research Institute, Melbourne, Australia.

⁸University of Melbourne, Melbourne, Australia.

⁹Perth Children's Hospital, Perth, Australia.

¹⁰Telethon Kids Institute, Perth, Australia.

¹¹University of Western Australia, Perth, Australia

Abstract

Tumours of the CNS are among the most common in AYA and often carry high morbidity / mortality. Furthermore, outcomes for AYA have failed to improve at the rate of younger patients, in part due to lower enrolment on clinical trials. ANZCHOG, the national cooperative trials group for childhood cancer, together with COGNO, has recently formed an AYA sub-committee, aimed at improving clinical trial enrolment for this under-represented population.

ANZCHOG has 3 currently open diagnostic studies –

1./2. **AIM BRAIN / MNP2.0**, both utilizing whole genome methylation analyses to increase diagnostic accuracy of CNS tumours and develop an accredited Australasian service (< 21 yo) and

3. **PRISM**, identifying molecularly driven therapeutic targets and personalised treatment for high-risk cancers (< 21 yo) -

and 8 open / soon to be opened therapeutic studies

- BIOMEDE, an exploration of therapies for DIPG (< 25 yo)
- 2. **INFORM2,** a phase I/II study of the anti-PD1 nivolumab and the HDAC inhibitor entinostat in refractory malignancies (< 21 yo)
- LOGGIC, a phase III trial comparing standard chemotherapy to the MEK inhibitor trametinib for LGG (<21 yo)
- 4. **OZM-075**, a pilot study of nivolumab in hypermutant cancers (<25 yo)
- 5. **NORTH,** a phase II study of the HDAC inhibitor panobinostat in ATRT(< 40 yo)
- 6. **PARC**, a phase II study of pegylated arginase in relapsed cancers (< 24 yo)
- SJ-ELIOT, a phase I evaluation of the CHK1/2 inhibitor prexasertib in recurrent medulloblastoma (< 25 yo) and
- TiNT, a phase II study of trametinib in NF-1 associated plexiform neurofibromas or optic pathway LGG (< 25 yo) – for patients older than 18 years of age with a CNS malignancy.

Further AYA studies, in collaboration with the Pacific Pediatric Neuro-Oncology Consortium (PNOC) and the Collaborative Network for Neuro-Oncology Clinical Trials (CONNECT), are expected in the near future.

Redo craniotomy or Bevacizumab for symptomatic steroid refractory true or pseudoprogression following IMRT for Glioblastoma

<u>Michael Back</u>^{1,2,3,4,5}, Dasantha Jayamanne¹, Theresa Cook³, Helen Wheeler^{1,2,5}

¹Northern Sydney Cancer Centre, Sydney, Australia.

²Sydney Medical School, University of Sydney, Australia.

³Central Coast Cancer Centre, Gosford, Australia.

⁴Genesis Care, Sydney, Australia.

⁵The Brain Cancer Group, Sydney, Australia

Abstract

Aim: There is minimal evidence to support decision-making for symptomatic steroid-refractory pseudoprogression or true progression occurring after IMRT for glioblastoma (GBM). This study assessed the survival outcome of patients managed with redo craniotomy (RedoSx) or Bevacizumab (BEV) for steroid-refractory mass effect after IMRT for GBM.

Materials and Methods: Patients with GBM managed between 2007 and 2017 with the EORTC-NCIC Protocol were entered into a prospective database. Patients with symptomatic steroid-refractory mass effect within 6 months of IMRT managed with either RedoSx or BEV were identified for analysis. For the primary endpoint of median overall survival (OS) post intervention, outcome was analysed in regards to potential prognostic factors, and differences between groups assessed by log-rank analyses.

Results: Of 348 patients managed with the EORTC-NCIC Protocol, 59 required an intervention within 6 months of IMRT completion for either true or pseudoprogression (38 with RedoSx and 21 with BEV). Subsequently 14 of the 38 patients managed with RedoSx required salvage with BEV. Median OS post intervention was 8 months (95%CI: 6.1-9.9) for the total group; and 6 months (95%CI: 3.0-9.0) for RedoSx and 9 months (95%CI: 7.6-10.4) for BEV (p=0.19).Age, time from IMRT, and ECOG performance status were not associated with OS. In the RedoSx patients, subsequent BEV salvage was associated with improved OS (8 vs 4 months, p=0.02). Immunohistochemical features such as Ki67% reduction correlated with survival however the presence of residual glioma cells did not.

Conclusion: At time of symptomatic steroid-refractory true or pseudoprogression following IMRT for GBM, BEV was equivalent to RedoSx in terms of OS. Use of BEV after RedoSx was associated with improved survival over RedoSx alone.

17

Reflecting on survivorship outcomes to aid initial decisionmaking in patients managed for IDH-mutated Anaplastic Glioma

<u>Michael Back</u>^{1,2,3,4,5}, Dasantha Jayamanne¹, Marina Kastelan⁵, Chris Brown^{1,6}, Helen Wheeler^{1,2,5}

¹Northern Sydney Cancer Centre, Sydney, Australia.

²Sydney Medical School, University of Sydney, Australia.

³Central Coast Cancer Centre, Gosford, Australia.

⁴Genesis Care, Sydney, Australia.

⁵The Brain Cancer Group, Sydney, Australia.

⁶Clinical Trials Centre, University of Sydney, Australia

Abstract

Aims: Patients with anaplastic glioma (AG) harbouring an isocitrate dehydrogenase (IDH) mutation have potential durable survival following intensity modulated radiation therapy (IMRT) and chemotherapy. Understanding longterm functioning, and the factors that impact on later effects is important for decision-making. This study aims were to document the functional status of patients in the 3-5 years after therapy for an IDH mutated anaplastic astrocytoma and the factors that impact on worse outcome.

Methods: Consecutive AG patients managed with IMRT were reviewed regarding six Survivorship Domains including ECOG Performance Status (ECOG); Medical Research Council Neurological Status (MRC); Late Toxicity; Co-morbidity; Functional Status (Employment/Driving); and Psychosocial Events. Assessments were performed at baseline pre-RT, month+6, and Years +1, +3 and +5 post-RT. Primary endpoints were ECOG at Year+3 and Employment at Year+3.

Results: 146 patients were included, with 5.1 years median follow-up. The 6-yearOS was 78.7% (95%CI:71.1-87.0). Baseline ECOG was 0 -1 in 82.2% but improved at Y+1(95.7%) and Yr+3(97.2%). Employment at Yr+3 and Yr+5 was 70.1% and 76.5% respectively; compared with 61.6% baseline. On multivariate analysis, worse ECOG at Yr+3 was related to multiple craniotomies prior to RT (p<0.001), worse ECOG preRT (p<0.001), worse MRC Score preRT (p=0.003), presence of prior relapse (p=0.001), and anaplastic astrocytoma subtype (p=0.002). Absent or impaired Employment at Yr+3 related to older age (p=0.002), multiple craniotomies prior to RT (p<0.001).

Conclusion: AG with IDH mutation have potential for prolonged survival. Functional status is good in patients who are progression free at three to five years following IMRT with greater than 95% of patients having high performance status and greater than 75% in employment.

Identifying barriers to completion of adjuvant therapy in patients with newly diagnosed glioblastoma multiforme: an exploratory study

Kate Rzadki^{1,2}, Sunit Das^{1,2}

¹University of Toronto, Toronto, Canada.

²St. Michael's Hospital, Toronto, Canada

Abstract

Hypothesis/Purpose: This study aims to identify the key factors that are influencing one third of medically eligible newly diagnosed glioblastoma (GBM) patients diagnosed at St. Michael's Hospital to choose to decline or withdraw from the recommended regimen of chemoradiation, the Stupp protocol. We hypothesize that there are underlying factors that influence a GBM patient's decision to decline or withdraw from the Stupp protocol, other than those related to the disease itself, and that these factors fall within Kim et al.'s Conceptual Framework for Individual and Family End-of-Life Decision Making¹.

Methods: In this mixed methods study, data will be collected from two sources: medical chart review and semi-structured interviews. During the chart review of newly diagnosed GBM patients (n=150), factors that are common amongst patients who have not completed treatment will be analyzed in order to identify profiles of those at risk of decline or withdrawal from care. Next, semi-structured interviews will be conducted with three groups: newly diagnosed GBM patients who have declined or withdrawn from treatment (n=20), caregivers (n=20), and healthcare providers (n=10). Data collected from the interviews will be analyzed to identify common themes or factors related to the decision to decline or discontinue treatment and the decision-making process.

Results: Data collection is underway and we anticipate that analysis will be completed by October.

Conclusion: The results of this study may be used to inform practitioners by identifying barriers to completion of chemoradiation which in turn, may lead to the identification of patient profiles at risk of withdrawing from care. Identifying these risk factors may help in the development of tailored resources that can be used to better support GBM patients in the treatment and decision-making process. The findings from the analysis will also offer supporting or non-supporting evidence to Kim et al.'s framework.

References

1. Kim, K., Heinze, K., Xu, J., Kurtz, M., Park, H., Foradori, M., & Nolan, M. T. (2018). Theories of Health Care Decision Making at the End of Life: A Meta-Ethnography. Western Journal of Nursing Research, 40(12), 1861–1884. https://doi.org/10.1177/0193945917723010

19

K27M histone mutated diffuse midline Gliomas in older patients

<u>Alexander Yuile^{1,2}</u>, Marina Kastelan^{3,1,2}, Jamie Drummond^{3,1}, Michael Back^{3,1,2}, Helen Wheeler^{1,2}

¹Royal North Shore Hospital, Sydney, Australia.

²Northern Sydney Cancer Centre, Sydney, Australia.

³The Brain Cancer Group, Sydney, Australia

Abstract

Background

Histone mutations in the K27M gene were first described in 2014 and were incorporated into the WHO 2016 CNS tumour classification in 2016. They are associated with Diffuse Midline Gliomas (DMG) and usually occur in children. Median survival for these patients is only 9 months. There is limited treatment and outcome data for those older patients who present in late adolescence or as adults. Biopsy samples are small, limiting extensive genomic testing. Histological appearance can greatly vary. Here we describe 8 patients with K27M DMG from our adult Glioma data base and correlate outcome with clinical, radiological and histopathological features and treatment.

Methods

Our Glioma database (2009-2018) was used to identify patients. Selection criteria included those who presented with a midline Glioma, had undergone biopsy and had tissue available for immunohistochemistry (IHC). The Sigma-Aldrich Clone RM192 antibody was used for to determine the presence of a K27 mutation. Clinical, radiological, treatment and outcome data was then correlated.

Results

Eight patients who fitted our selection criteria are reported. The median age at diagnosis was 23 (range 17-47), 2/8 were female. Four presented with acute hydrocephalus. Four lesions were supra-tentorial, 3 in the brainstem and 1 in the cervical cord. Three were non-enhancing and 5 had patchy gadolinium enhancement. Histology revealed 4 glioblastoma, 3 anaplastic astrocytoma and 1 diffuse low grade glioma. Four were treated with concurrent chemoradiotherapy followed by adjuvant temozolomide, and four with radiotherapy alone. The median PFS 12.5 months (4-17months) and OS 20.5 months (4-44 months).

Conclusion

This case series documents the clinical features of 8 older patients with K27M mutated DMG. Ongoing studies are needed to characterize the molecular differences and clinical course of these tumours in older patients to determine if they differ from the paediatric population and identify better therapeutic options.

Next generation sequencing impacts the classification and management of gliomas

<u>Veronica Cheung</u>¹, Joanne Sy¹, Grace Wei¹, Maggie Lee¹, Michael Buckland^{1,2}

¹Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Australia.

²Discipline of Pathology, School of Medical Sciences, Brain & Mind Centre, University of Sydney, Camperdown, Australia

Abstract

Introduction

The 2016 WHO Classification of Central Nervous System Tumours heralded a shift towards an integrated diagnosis for gliomas, which incorporates both histological features and molecular data. Next generation sequencing (NGS) is an efficient and cost-effective method which enables parallel analysis of multiple genetic alterations in a single platform. Our institution obtained NATA accreditation for an NGS custom glioma panel in November 2018. Here we compare the initial histological and the final integrated diagnoses in the first 4 months of utilising NGS in our diagnostic workup of primary brain tumours.

Method and results

We use a custom glioma gene panel that uses multiplex PCR with ion semiconductor sequencing (AmpliSeq, Ion Torrent S5) to assess a panel of key gene mutations and copy number variations. The NATA-accredited genes include *TERT*, *H3F3A*, *BRAF V600E*, *IDH1/IDH2*, *EGFR* amplification, and chromosome 1p/19q co-deletion. Of the 74 tumours that were analysed, 15 cases (20%) had an altered diagnosis defined by a change in tumour classification or grade. Fourteen cases (19%) had their diagnosis refined through the identification of a mutation not detected by routine immunohistochemistry, and 27 tumour diagnoses (36%) were confirmed by NGS. Of the remaining 18, 15 did not yield any significant findings on NGS, 2 had no histological details provided and one did not have sufficient DNA for analysis.

Conclusion

This early analysis has highlighted the utility of NGS in refining glioma classification, since some tumours are now defined by their molecular signature rather than by histology alone. Furthermore, the NGS platform is adaptable and has the potential to expand as new molecular prognostic markers and therapeutic targets are identified.

21

Clinical trials in Glioblastoma: learning from previous experiences towards optimal development of trial design

Adithya Balasubramanian¹, <u>Ashray Gunjur¹</u>, Sagun Parakh^{2,1}, Lawrence Cher¹, Hui Gan^{1,3,4}

¹Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, Australia.

²Monash Health, Clayton, Australia.

³LaTrobe School of Cancer Medicine, Heidelberg, Australia.

⁴University of Melbourne, Heidelberg, Australia

Abstract

AIMS: We postulate inefficiencies in the Phase 2/3 transition contribute to majority of GBM phase 3 trials (P3T's) being negative.

METHODS: Studies between 2005-2019 inclusive were identified though MEDLINE(R) using keywords and MeSH terms, and manual bibliography searches. Clinical, statistical and sponsor characteristics were extracted independently by two reviewers (AB&AG). For each P3T, phase 2 trial (P2T) data was "optimally matched" where the same drug was used in similar schedule and GBM population; "partially matched" where dis-similar schedule and/or treatment setting; and "lacking" in all other circumstances. Data were compared by Pearson Correlation, t-test or chi-square as appropriate.

RESULTS: 20 relevant P3T's and 17 P2T's were identified. The median progression free survival (mPFS) and median overall survival (mOS) in P3T's were 7.7 and 20.1 mths respectively for first line studies; 2.2 and 7.3 mths respectively for recurrent studies. These were 10.0 and 16.1 for 1st line P2T's, and 3.6 and 8.3 mths respectively for recurrent studies. 55% of P3T had optimally matched P2T, with high P3T/P2T concordance for mPFS (r²= 0.90, p< 0.01) and mOS (r²= 0.87, p< 0.01). The remaining P3T had only 'partially matched' (15%) or lacked P2T data (30%). Partially matched P3Ts/P2Ts (25%) lacked concordance for both mPFS (r²= 0.46, p=0.528) and mOS (r²= 0.09, p=0.624). 84.2% of P3T (16/19) did not meet the pre-defined statistical endpoint for benefit. All first-line P2T with mPFS< 14 months and/or OS< 22 months had negative P3T. All recurrent P2T with mPFS< 6 months and mOS< 12 months had negative P3T. Impact of sponsors and molecular subtypes will be presented.

CONCLUSIONS: Selection bias, lack of optimally matched P2T/P3T and underpowered P3Ts contributed to the large number of negative trials and need to be considered in any future trial design.

Mapping of B7-H3 immune checkpoint expression to diagnostic morphological features in glioblastoma using deep convolutional neural networks

Guoqing Bao¹, Ran Xu^{2,3}, Christina Loh², Svetlana Cherepanoff⁴, Kerrie McDonald^{5,6}, Anna K. Novak^{5,7}, Richard Banati^{5,8,9}, Michael Buckland^{5,4}, Xiuying Wang¹, <u>Manuel B.</u> <u>Graeber^{5,2}</u>

¹Biomedical and Multimedia Information Technologies Group, School of Information Technologies, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, Australia.

²Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

³Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, Beijing, China.

⁴Department of Neuropathology, RPA Hospital and Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

⁵Cooperative Trials Group for Neuro-Oncology (COGNO), Sydney, Australia.

⁶Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia.

⁷Department of Medical Oncology, University of Western Australia, Perth, Australia.

⁸Life Sciences, Australian Nuclear Science and Technology Organisation, Sydney, Australia.

⁹Medical Imaging and Radiation Sciences, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.

Abstract

Background and Aims:

Glioblastoma multiforme (GBM) is a common and fatal primary brain tumour. Immune checkpoint targeting has emerged as a promising new treatment approach in a number of traditionally untreatable cancers. Consequently, there is significant interest in the expression of immune checkpoint molecules in GBM. Accordingly, we set out to study B7-H3 (CD276), which discriminates endothelial cells of malignant tissue from normal endothelial cells, in glioblastoma using tissue sections of glioblastoma biopsies and deep convolutional neural networks (DCNNs) to analyse CD276 expression *in situ*.

Methods:

Biopsies of 37 cases of GBM, provided by the AGOG tissue bank, were stained for H&E and immunohistochemically labelled using a monoclonal anti-CD276 antibody. All histological slides were examined by a neuropathologist and then scanned using a slide scanner. Two DCNNs were designed using Keras with TensorFlow as the backend to detect palisading necrosis, microvascular proliferation, geographic necrosis, normal blood vessels, normal brain tissue and cellular tumour areas as well as expression of CD276. The tissue distribution of CD276 in relation to the diagnostic morphological features was then visualized using heat maps representing the DCNNs' predicted classes with different colours.

Results:

The trained DCNNs reliably identified the diagnostic morphological features they had been trained to recognize and allowed us to correlate the occurrence of each feature with the tissue expression of CD276. Notably, the close association between CD276 and microvascular proliferation in GBM samples was faithfully visualized by the heat maps, permitting qualitative as well as quantitative morphological analysis of an entire histological section within one minute, speeding up analysis by several orders of magnitude.

Conclusion:

Our study demonstrates the versatility of DCNNs for the mapping of immunohistochemical markers. This may greatly facilitate tissue analysis for molecules that show a complex tissue distribution and opens up a new avenue for research in neuropathology.

25

Modern Brain Cancer Biobanking: It's not just about preserving tumour tissue

<u>Rebecca Ormsby</u>^{1,2}, Santosh Poonnoose^{3,1}, Lisa Ebert⁴, Michael Brown⁴, Melinda Tea⁵, Stuart Pitson⁵, Ganessan Kichenadasse^{1,2}

¹College of Medicine and Public Health, Flinders University, Adelaide, Australia.

²Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Adelaide, Australia.

³Department of Neurosurgery, Flinders Medical Centre, Adelaide, Australia.

⁴Translational Oncology Laboratory, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.

⁵Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia

Abstract

Historically cancer biobanks have focused on preserving surgically resected tumour tissue, either as formalin-fixed, paraffin-embedded or cryopreserved specimens and stored for future research. In the current era of translational and precision medicine however more and more researchers require fresh biospecimens for generating cell lines, 3D organoid models and xenograft studies. Providing researchers with freshly resected tumour tissue requires good communication and close cooperation between the neurosurgeons, theatre staff, biobank coordinator and the researchers involved to facilitate the collection and transport of specimens in a timely manner.

The South Australian Neurological Tumour Bank has been collecting neurological tumour specimens since 2015. However, the majority of the research groups we currently support primarily require fresh biospecimens for their projects. In addition to the challenges of coordinating prompt transfer of specimens from the theatre to the laboratory, in vitro culturing of tumours generally necessitates collecting larger quantities of starting material than many other experimental endpoints. As the majority of the tumour is commonly debulked using surgical aspiration, we now collect the aspirate and provide this fresh to researchers. Aspirated tumour material can be used for generating cell lines with a success rate comparable to solid tumour tissue.

Research in the era of translational and precision medicine has a greater demand for biospecimens linked with patient clinical data. As a result modern biobanking has seen a shift in focus from primarily sample driven to data driven strategies. We are in the process of developing a comprehensive database that will align with the Brain Cancer Biobanking Australia (BCBA) minimum dataset and will be situated behind the SA Health firewall enabling neurosurgeons, clinicians and trainees to view and contribute to clinical data entry.

Modern cancer biobanks need to adapt to the changing needs of researchers to get the most research value from the specimens they collect.

26

Building the Bridge: The value of consumer co-design in brain cancer resource development

<u>Dianne Legge</u>¹, Steffi Renehan¹, Emma Daly², Louise Saliba³, Paula Howell⁴

¹Olivia Newton-John Cancer Wellness & Research Centre, Austin Health, Melbourne, Australia.

²Cabrini Health, Melbourne, Australia.

³Monash Health, Melbourne, Australia.

⁴North East Integrated Cancer Service, Melbourne, Australia

Abstract

Background

Improved survival has raised awareness of the impacts and challenges confronting people with grade 2/3 brain cancers. To assist people re-engage with a productive and purposeful life, the *Building the Bridge Project* partnered with Victorian consumers, health professionals and lead cancer agencies to create a resource focused on what happens after treatment. How to access timely and appropriate help, and how to get back to fundamental life roles was the project target. Project partners were Austin, Cabrini and Monash Health and NEMICS.

Aim

Develop a tailored, accessible information resource for brain cancer survivors that supports self-management and provides a tool for health professionals to use in survivorship conversations.

Methods

Experience-based co-design placed survivor experiences central to the project. During stage one, focus groups with 27 consumers and carers defined high prevalence issues experienced when returning to life post-treatment. Consultation with neuro-oncology professionals and project partners refined themes and explored information accessibility. Further consumer consultation scoped resource format. Stage two developed resource content consistent with themes identified in the data. Further consumer feedback was incorporated prior to design. Final stage tested and evaluated the resource with consumers not previously engaged in co-design.

Results

Building the Bridge to Life with Brain Cancer is a 130-page hard copy, spiral bound resource embedded with patient stories, tips, strategies, checklists and targeted resources to facilitate re-engage in everyday life. Accessible language and non-medicalised content is presented in small chunks for ease of reading. Evaluation found high levels of acceptability, relevance and usefulness.

Conclusion

Consumer co-design placed the voice of the person with brain cancer at the centre of resource development. This was an important and powerful approach, yielding a relevant and accessible resource aimed at improving people's capacity to self-manage their condition, access appropriate supports and re-engage in community life.

27

Estimation of BRAF V600E mutations using Immunohistochemistry(IHC) in new diagnosis and recurrent malignant glioma patients managed at the Canberra Hospital

Divyanshu Dua^{1,2}, <u>Chris Twyford</u>¹, Mitali Fadia³, Gane Pranavan^{1,2}

¹Department of Medical Oncology, The Canberra Hospital, Australian Capital Territory, Australia

²ANU Medical School, Australian National University, Acton ACT, Australia

³The ACT Pathology, Australian Capital Territory, Australia

Abstract

Introduction

Gliomas have demonstrated a range of behaviours with high grade gliomas, especially Glioblastoma Multiforme and IDH1/2 wild type tumours have known to be aggressive. Surgery, radiotherapy and Temozolamide seems to be the cornerstone of the therapy. Hence there is a need for target approach similar to other solid tumours.

VE – BASKET study was an open labelled, non-randomised, multi-cohort study of BRAF v600 mutant non melanoma cancers. These patients were treated with Vemurafenib 960 mg twice a day continuously until disease progression, withdrawal or intolerable adverse effects. In this study 24 patients were treated out of which 11 were high grade gliomas. The ORR was 25% and median PFS as 5.5 months. In the high-grade glioma group, 1 patient had a partial response and 2 of the patients had stable disease for >12 months.

Objective

a. BRAF V600E mutation is a driver of mutation in malignant glioma patients.

b. BRAF V600E mutated patient have better progression free survival and overall survival when treated with targeted approach with BRAF inhibitors.

Methods

- We identified 20 patients with diagnoses of high grade gliomas diagnosed and managed at the Canberra Hospital in late 2017.
- BRAF V600E IHC was conducted for the 20 identified patients at the ACT pathology using the commercial BRAF immunohistochemistry V600E mutation-specific antibody (VE1) available.

Results

• All 20 patients were negative for the BRAF V600E mutation.

Conclusions.

- The Incidence of BRAF V600E mutation in high grade gliomas is low.
- Thus, immunohistochemistry is good as a screening tool but the mutations can be missed and needs confirmation with PCR.
- We aim to confirm the results using the The Qiagen Thera screen BRAF PCR kit is used to detect 5 somatic mutations in the BRAF gene using real time PCR (V660E, Ec, D, K and R).

28

Challenges in regional neurosurgery – analysis of distance and time in the surgical management of brain metastases in North Queensland

Anson Chan, Michael Colditz, Eric Guazzo

Department of Neurosurgery, Townsville Hospital, Townsville, Australia

Abstract

Aims:

The Townsville Hospital (TTH) has North Queensland's only neurosurgery unit, providing neurosurgical oncology care for a geographically regional and remote population of 695,000. It is unclear if there are significant barriers to accessing neurosurgical oncology services related to distance, specifically for surgery for brain metastases.

Methods:

We performed a five year retrospective review of all patients who underwent neurosurgery for brain metastases at TTH between 2014 to 2019. Distances between patients' home hospital location and Townsville were calculated. Statistical analysis of demographic, time to review and surgery, and distance travelled to TTH was performed with SPSS.

Results:

120 patients underwent neurosurgery for brain metastases, with local referrals accounting for 48 and 72 from other regional and remote hospitals. 49 (40.8%) were female and 71 (59.2%) were male, and the mean age was 61 years. Patients travelled between 88 to 902 km with a mean distance of 440 km. The mean time from referral to review was 3.6 days (1.63 for Townsville, and 4.94 for patients from regional and remote hospitals, P=0.0002). The mean time to surgery was 11 days with no statistically significant difference between Townsville locals and patients from other regional and remote hospitals (P = 0.308). The most common resected brain metastases diagnoses were melanoma and non-small cell lung cancer with 31 cases (25.83%) each.

Conclusions:

In the surgical management of brain metastases at a regional center, referral from other regional and remote hospitals was associated with a statistically significant increase in time to review compared with referrals from Townsville, however this difference did not greatly alter surgical management as there was no significant difference in time to surgery despite the mean distance of 440 km.

Postoperative hypofractionated stereotactic radiotherapy for intracranial metastases: relationship between dose and local control

Mihir Shanker^{1,2}, Sidyarth Garimall³, Michael Huo^{1,4,2}, Sarah Olson¹, Matthew Foote^{1,2}, <u>Mark Pinkham^{1,2}</u>

¹Princess Alexandra Hospital, Brisbane, Australia.

²The University of Queensland, Brisbane, Australia.

³The Prince Charles Hospital, Brisbane, Australia.

⁴Princess Alexandra Hospital Research Foundation, Brisbane, Australia

Abstract

Introduction

Hypofractionated stereotactic radiotherapy (HFSRT) to the cavity after resection for brain metastases improves local control. We aimed to assess the relationship between prescribed dose and local control in an institutional cohort of patients receiving HFSRT after surgery.

Methods

A retrospective review of consecutive patients receiving HFSRT to the surgical cavity between January 2012 and December 2018 was performed. Treatment was delivered using an appropriately-adapted linear accelerator with ExacTracTM on board imaging and Hexapod couch corrections. The primary outcome was defined as time to radiological or histological confirmation of local recurrence following completion of radiotherapy. Dose-fractionation regimens were converted to biologically equivalent doses assuming $\alpha/\beta=10$ (EQD2_[10]). Multivariate Cox proportional hazards modelling was performed to determine hazard ratios (HR) with respective 95% confidence intervals (CI). The Log-rank test was used to determine p values taking statistical significance p<0.05.

Results

There were 134 patients and 144 cavities identified. The most common primary histologies were melanoma (n=49) and lung (n=32). 116 patients (87%) underwent a gross total resection. Median treatment volume (PTV) was 28ml (range 2.4-149.2). The most common dose-fractionations were 24Gy in 3 fractions (EQD2[10] 38.4Gy, n=80), 27.5Gy in 5# (EQD2[10] 37.125Gy, n=27) and 30Gy in 5# (EQD2[10] 40Gy, n=11). Median dose was EQD2[10] 38.4Gy (range 22.3-59.7). 12 (9%) patients demonstrated local recurrence at median interval 215 days (range 4-594). 7 (5%) patients experienced grade 3 or higher toxicity attributed to HFSRT. There were no significant associations for histology, age, residual volume, PTV or target location with local failure. In multivariate analysis, EQD2[10] was associated with local failure such that increased equivalent doses improved local control [HR=0.79 and 95% CI 0.65-0.96, p=0.0192].

Conclusion

Local control after HFSRT to the surgical cavity improves with increasing dose. Rates of grade 3 toxicity were low overall.

30

Understanding the Function of Ephrin A5 Signalling in Adult Brain Cancer

<u>Rochelle Dsouza¹</u>, Seckin Akgül¹, Fiona Smith¹, Rosalind Jeffree², Po-Ling Inglis², Andrew Boyd¹, Bryan Day¹

¹QIMR Berghofer, Herston, Australia.

²Royal Brisbane and Women's Hospital, Herston, Australia

Abstract

Glioblastoma (GBM) is the most common and aggressive malignant primary brain cancer and is associated with very poor patient outcomes. Standard treatment involves surgical resection, post-operative radiation and temozolomide (TMZ) chemotherapy. This necessitates further research into new therapeutic approaches and, in particular, therapies which target chemo-resistant tumour propagating cells, often referred to as cancer stem cells.

The EphA3 receptor is frequently elevated in GBM, particularly in the mesenchymal subtype and is most highly expressed in tumour-initiating cells¹. Our data in GBM tissue shows that tumour cells expressing the high-affinity EphA3 ligand, ephrin A5; are distinct from EphA3 expressing cells. The ephrin A5 positive cells express the known glial differentiation marker GFAP, are less proliferative and less stem cell-like. EphA3 is expressed in the vimentin positive, highly proliferative, mesenchymal cells in GBM. Ephrin A5 over-expression in primary cell lines led to a more differentiated phenotype *in-vitro*. Ephrin A5 over expression orthotopic mouse models showed a moderate reduction of GBM aggressiveness and downregulation of stem cell markers.

More recently, we have also shown that EphA3 antibody drug conjugates (ADCs) doubled survival in vivo whilst inducing minimal toxicity in GBM orthotopic animal models². However, following EphA3-ADC therapy, tumours invariably recurred despite efficient targeting and reduction of EphA3 receptor levels in recurrent tumours. A significant reduction in EphA3 mRNA tumour levels was seen in the treatment group, while ephrin A5 levels were maintained. This indicates that the recurrence may be in part due to the ephrin A5 expression and targeting this could lead to further improvement in survival.

In summary whilst better understanding the biology of ephrin A5 expression, we will also validate antibody-based approaches to perform dual targeting of EphA3 and ephrin A5, leading to an extension GBM patient survival.

References

- 1. Day BW *et al*. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 2013;23:238-48
- 2. Offenhauser C *et al*. EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers (Basel) 2018;10

Sunday 27th October – Tuesday 29th October 2019 International Convention Centre Sydney, Australia

DELEGATES LIST

Mr Lucas Adda	COGNO
Prof Meera Agar	University Of Technology Sydney
Dr Farhannah Aly	Ingham Institute for Applied Medical Research
Mrs Diana Andrew	COGNO
Dr Malmaruha Arasaratnam	Gosford Hospital
Dr Iman Azimi	University Of Tasmania
A/Prof Michael Back	Northern Sydney Cancer Centre
Ms Vanessa Barahona	Prince of Wales Hospital
Ms Liz Barnes	NHMRC CTC
Dr Yael Barnett	St Vincent's Hospital Sydney
Dr Ulrich Baumgartner	QIMR Berghofer Medical Research Institute
Dr Andrej Bece	St Geroge Hospital
Dr Ellizabeth Benson	
Prof Michael Besser	University of Sydney
Ms Eloise Bowring	Cabrini Health
Miss Caterina Brighi	The University of Queensland
Dr Daniel Brungs	Wollongong Hospital
A/Prof Kate Burbury	Peter Maccallum Cancer Centre
Dr Robert Campbell	Bendigo Health
Ms Elizabeth Campbell-taylor	Royal Hobart Hospital
Ms Candace Carter	NHMRC CTC
Dr Anson Chan	Townsville Hospital
Dr Lawrence Cher	Austin Health
Dr Veronica Cheung	RPA / RNSH
Ms Jenny Chow	COGNO
Dr Benjamin Chua	Royal Brisbane & Women's Hospital
Dr Catherine Clark	St. George Hospital
A/Prof Andrew Cole	Hammondcare
Dr Raymond Cook	RNSH/NSP
Dr Adam Cooper	Liverpool Hospital
Mrs Nicola Cove	Central Coast Cancer Centre
Mrs Anita Cox	Gold Coast University Hospital
Ms Emma Daly	Cabrini Health
A/Prof Andrew Davidson	Macquarie Neurosurgery
Prof Bryan Day	QIMR Berghofer Medical Research Institute

Ms Narelle Dickinson	COGNO
Dr Anthony Dowling	St Vincent's Hospital Melbourne
A/Prof Kate Drummond	Royal Melbourne Hospital
Dr Rochelle D'Souza	QIMR Berghofer Medical Research Institute
Dr Tracey Dunlop	St George Hospital
Prof Ben Ellingson	UCLA
Ms Yi Feng	COGNO
Dr Kathryn Field	Peter Maccallum Cancer Centre
Ms Marcia Fleet	Melbourne Health / VCCC
Ms Tara Flores	NHMRC CTC
A/Prof Hui Gan	Olivia Newton-John Cancer Research Institute
Dr Senthil Gandhidasan	Illawarra Cancer Care Centre
Dr Laura Genovesi	Institute for Molecular Bioscience
Dr Anja Giese	BMS Australia
Dr Sanjeev Gill	Alfred Hospital
Dr Guillermo Gomez	Centre For Cancer Biology
Mrs Alisha Gooley	John Hunter Hospital
Mrs Jane Griffiths	Calvary Mater Newcastle
Dr Ashray Gunjur	Austin Health
Dr Cecelia Gzell	Genesis Care
Dr Umbreen Hafeez	Austin Hospital
A/Prof Georgia Halkett	Curtin University
Ms Merryn Hall	NHMRC CTC
Dr Susannah Hallal	Chris O'Brien Lifehouse
Dr Catherine Han	University of Auckland
A/Prof Rosemary Harrup	Royal Hobart Hospital
Prof Richard Harvey	Sydney Ear Nose & Throat Clinic
Mr David Hewitt	
Mrs Catherine Hindson	Brain Tumour Alliance Australia
Ms Stephanie Hollis	NHMRC CTC
Mrs Michelle Horsnell	Cabrini Health
Dr Elizabeth Hovey	Prince Of Wales Hospital
Dr Dasantha Jayamanne	Royal North Shore Hospital
A/Prof Lindy Jeffree	RBWH
Dr Ross Jennens	Epworth Healthcare
Prof Terrance Johns	Telethon Kids Institute
Ms Lyndsey Jones	The Brain Cancer Group

Dr Benjamin Jonker	RPA / St Vincent's
Miss Marina Kastelan	The Brain Cancer Group
Dr Eng-siew Koh	Liverpool Hospital
Dr Ben Kong	NHMRC CTC
Dr Lydia Lamb	St Vincent's Hospital
Dr Arian Lasocki	Peter Maccallum Cancer Centre
Prof Ian Law	Rigshospitalet
A/Prof Hien Le	Royal Adelaide Hospital
Ms Dianne Legge	Onj Cancer Centre - Austin Health
Ms Robyn Leonard	Brain Cancer Biobanking Australia
Ms Shirley Liang	Royal North Shore Hospital
Ms Tracy Liaw	NHMRC CTC
Ms Anneliese Linaker	NHMRC CTC
Mr Jamie Lopez	Bristol-Myers Squibb
A/Prof Zarnie Lwin	University Of Queensland
A/Prof Ann Mccormack	St Vincent's Hospital, Sydney
A/Prof Kerrie McDonald	Cure Brain Cancer Foundation
Mrs Allison Mcgie	The Brain Cancer Group
Ms Minjmaa Minjgee	National Cancer Center of Mongolia
Dr Anthoulla Mohamudally	Royal North Shore Hospital
Dr Seema Nagpal	Stanford University
Dr Najmun Nahar	Westmead Hospital
Prof Anna Nowak	University of Western Australia
Dr Carolin Offenhauser	QIMR Berghofer Medical Research Institute
A/Prof Geraldine O'neill	The Children's Hospital at Westmead
Dr Wee Loon Ong	Austin Health
Dr Rebecca Ormsby	Flinders University
Dr Jonathon Parkinson	Royal North Shore Hospital
Dr Nitya Patanjali	Chris O'Brien Lifehouse
Dr Sarennya Pathmanandavel	Kinghorn Cancer Centre St Vincent's Hospital
Dr Claire Phillips	Peter MacCallum Cancer Centre
A/Prof Mark Pinkham	PA Hospital
Dr Santosh Poonnoose	Flinders Medical Centre
Miss Stephanie Quattromani	Cure Brain Cancer Foundation
Dr Thulasi Rajah	Royal Brisbane Hospital
Mr Peter Ramstadius	ВТАА
Dr Robert Rapkins	Cure Brain Cancer Foundation

Ms Emma Reiterer	Cabrini
Ms Sonja Robertson	Roche
Dr Michael Rodriguez	DHM Pathology
Prof Mark Rosenthal	Peter MacCallum Cancer Centre
A/Prof Jeremy Ruben	Alfred Health
Dr Mythily Sachchithananthan	NHMRC Clinical Trials Centre
Ms Louise Saliba	Monash Health
Dr Frank Saran	Auckland City Hopsital
Dr Geoffrey Schembri	RNSH
Dr Sarah Shigdar	Deakin University
Dr Helen Shih	Massachusetts General Hospital
Dr Hao-Wen Sim	NHMRC Clinical Trials Centre
Prof John Simes	NHMRC Clinical Trials Centre
Dr Jeremy Simpson	Kazia Therapeutics
Mrs Desma Spyridopoulos	COGNO
Dr Joanne Sy	Royal Prince Alfred Hospital
Ms Evonne Tim	NHMRC CTC
Dr Annette Tognela	Macarthur Cancer Therapy Centre
Ms Emily Tu	NHMRC CTC
A/Prof Jenny Turner	Douglass Hanly Moir Pathology
Ms Chris Twyford	The Canberra Hospital
Prof Colin Watts	University of Birmingham
Dr Helen Wheeler	North Shore Hospital
Mr Samuel Stefanus Widodo	The University Of Melbourne
Mr William Williams	Brain Tumour Alliance Australia Inc
Ms Annabelle Wilson	Cure Brain Cancer Foundation
A/Prof Mark Wong	Westmead Hospital
Dr Matt Wong	Gosford Hospital
Dr Jin-san Yoo	Pharmabcine Inc.
Dr Alexander Yuile	Royal North Shore Hospital
Mr Amin Zadeh Shirazi	University of South Australia

Notes	

Notes	